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ABSTRACT

The objective of this thesis is (1) to show the experimental validation of recently proposed dis-

tributed adaptive control architecture for a class of heterogeneous uncertain multiagent systems as well as

(2) to theoretically propose a proportional integral controller for multiagent systems having limited resources

in the presence of a disturbance with stability analyses.

With regard to (1), the distributed adaptive control architecture used in the experiment utilizes

a control input having a nominal part and an adaptive augmentation part for each agent to suppress the

effect of uncertainties and disturbances effectively. This architecture is capable to provide uniform ultimate

boundedness for the output tracking error between each heterogeneous uncertain agent and the leader with

unknown dynamics. In addition, if the output of the leader converges to a constant, then the output of

each agent asymptotically converges to the output of the leader by this architecture, where the system is

subject to matched disturbances and time-invariant system uncertainties over fixed (i.e., time-invariant) and

directed graph topology. The experimental setup for validating this architecture is a multiagent mechanical

platform composed of two-cart inverted pendulums and a cart. In order to achieve heterogeneity, two carts

are attached with different length of pendulums and a cart is used without pendulum. Our mechanical

platform involves uncertainties due to friction between pinions of carts and the track. It is observed during

the experimental process that the output of agents follow the output of the leader with huge amplitude

of oscillations comparing to the control input with adaptive augmentation. This adaptive augmentation

minimizes the effect of uncertainties and make the output of agents follow the output of the leader with

considerably lower amplitude of oscillations. Several experimental plots are also given to show the efficacy

of the proposed distributed adaptive control architecture.

We now summarize (2). In contrast to the control architecture used, for example (1), in some real-

life scenarios it is not cost-effective to implement a controller into each agent. To address this problem,

a proportional integral controller is proposed to implement only one control input into the multiagent

system, which is composed of agents executing the distributed information based on the graph topology

vi
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in the presence of a disturbance (i.e., cyber-attack or malfunction) through only an agent (i.e., driver agent)

to robustify the overall closed-loop multiagent system. To this end, the trajectories of all agents in the

multiagent system with a fixed, connected and undirected graph, where the system subject to a bounded

disturbance through an agent (i.e., misbehaving agent), remain bounded with only one control input having

a bounded command irrespective of which agent we apply the control input. After that, we introduce two

methods to derive the steady-state value of each agent in the multiagent system whose graph topology for

the first method is fixed, connected and undirected and for the second method is a fixed, connected, and

undirected acyclic graph. While the second method is applicable to only the acyclic graph, it does not

require an inverse of a matrix dependent on the graph topology. The second approach also shows that the

largest steady-state deviation from the desired command in the multiagent system is minimized if the driver

agent is located as close as possible to the misbehaving agent. Several numerical examples are also presented

to illustrate the implementation of the theoretical results.

vii
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CHAPTER 1: INTRODUCTION

Multiagent systems consist of large teams of agents that locally communicate with each other,

execute the distributed information, and work cooperatively based on the graph topology. These systems

have been an attractive research topic in the systems and control community over the last two decades after

the developments in communication, sensor, and computer technologies. In addition, multiagent systems

have attracted growing attention from diverse fields owing to the wide interest in their applications such

as microsatellite clusters, sensor networks, unmanned vehicles, mobile robots, and automated highway

systems. In the literature, multiagent systems composed of agents having identical dynamics (respectively,

non-identical dynamics) are called homogeneous multiagent systems (respectively, heterogenous multiagent

systems).

With respect to controlling multiagent systems, two approaches generally adopted in the control

systems literature; that is, a centralized approach and a distributed approach. The motivation behind the

centralized approach is that each agent in the system is capable of reaching the central controller, which is

sufficiently powerful to navigate the whole system. On the other hand, distributed approach does not require

a central station at the expense of making the system more complexed in terms of structure and organization

[2]. Due to many physical constraints such as the possibility of communication bandwidth restrictions on

the information exchange between agents, energy constraints to name but a few, distributed sensing and

control is required in the real-life applications of multiagent systems [3]. Therefore, theoretical outcomes

and challenges mostly emerge from controlling these systems through partial and relative information (i.e.,

distributed control) without using a central controller (i.e., centralized control) [4]. In what follows, we first

provide a concise overview of distributed control algorithms.

1.1 Distributed Control

The distributed control is a method to control multiagent systems that utilizes information exchange

between neighbor agents based on a graph topology in order to achieve a given objective. It has several

1
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advantages in terms of attaining the overall common behavior such as less operational expenses, less system

requirements, and higher flexibility in scalability [2].

The system theoretic advancements in distributed control of multiagent systems has played a critical

role in controlling multiagent systems in order to address problems such as achieving consensus, formation,

and containment objectives. Consensus control can be considered in two categories; that is, leaderless

consensus and leader-follower consensus. Leaderless consensus means that each agent eventually reach

a common value [5], [6]. On the other hand, leader-follower consensus (i.e., consensus tracking) is a

cooperative task navigated by a leader. In particular, it is desired that the state of each agent converges

to the trajectory produced by using the single leader [3], [7]. Containment control arises if there exists

multiple leaders in the multiagent system to drive other agents to a safe region (i.e., convex hull) spanned

by leaders [8], [9]. Formation control accounts for the manipulation of agents to generate and maintain

a desired geometric shape [10], [11]. Note that the main difference between consensus, containment and

formation controls is the final states, which each agent eventually reach.

In practical applications, multiagent systems are generally subject to disturbances and uncertainties

such as modeling errors, frictions, actuator bias, and system nonlinearities. One of major issues the local

controller encounters is stability of each agent in the multiagent system under disturbances and uncertainties

as well as performing the overall system objective. To this end, distributed adaptive control is a strong tool

to maintain the stability of the multiagent systems in the presence of disturbances and uncertainties (e.g., see

[12], [13], [14]). As a class of multiagent systems, heterogeneous multiagent systems under nonidentical

system uncertainties and disturbances are also investigated since agents cannot perform their distributed

control approaches identically and this may lead to instability of the controlled multiagent systems (e.g., see

[14, 15] and references therein).

This thesis demonstrates the experimental validation of recently proposed distributed adaptive con-

trol architecture in [15] on a heterogeneous mechanical platform composed of two cart-inverted pendulums

and a cart to show the efficacy of this architecture in practice. It has been shown that the output of each

agent follows the output of the leader with smaller amplitude of oscillations by turning on the adaptive

augmentation on, as desired. The performance gets worse when we turn the adaptive augmentation off (i.e.,

only nominal part). We presents experimental plots to show the efficacy of the proposed distributed adaptive

control architecture.

2
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1.2 Multiagent Systems with Limited Resources

Technological advancements in networking and the production of electromechanical systems in a

miniature scale made the use of distributed control laws possible to control large scale systems. Due to

the lack of monitoring and controlling each agent in the multiagent system, agents in the system become

susceptible to cyber-attacks and malfunctions [16]. In the control systems literature, there exists numerous

studies considering cases, where each agent in the system is supposed to be subject to a disturbance. For

these cases, each agent is equipped with controllers, which are resisting to adverse conditions [17], [18].

However, this approach is not cost-effective for some real-life applications.

Specifically, consider sensor networks as an example for large scale systems, which are susceptible

to have malfunctioning sensors. Sensor networks consist of a large number of low-cost, small battery-

powered, and wireless sensors, which are densely placed in the environment to take measurements and

transfer the data to a central processor. Due to the restrictions on size and energy, these low-cost sensors

have limited capabilities in terms of processing, data transfer and storage. Some sensors may stop working

or function improperly and send false information into the network if these sensors are subject to adverse

environmental conditions, hardware or software failures [19]. When a sensor begins to malfunction, it (i.e.,

misbehaving agent) relays false information into the network and this results in moving the whole system in

the direction of the faulty sensor value [20]. If each sensor is equipped with controllers, which are capable of

suppressing the effect of a disturbance, the stated problems can be overcome. However, this is not desirable

since this will increase the cost of each sensor dramatically, which are used in high number.

In this thesis, we shows that the trajectories of all agents stay bounded if the multiagent system

having a fixed, connected, and undirected graph topology is subject to a bounded disturbance through an

agent (i.e., misbehaving agent) by using only a control input having a bounded command irrespective of

which agent we apply the control input. This reduces the necessity of making each agent equipped with

advanced controllers, which are resisting to disturbances. In addition, the steady-state value of each agent is

derived based on the control input is applied to the undisturbed and disturbed agent, respectively. Finally, we

derive a graph-theoretical approach to show explicitly the steady-state value of each agent in the multiagent

system having a fixed, connected, and undirected graph topology. This approach shows that the largest

steady-state deviation from the desired command in the multiagent system is minimized if the driver agent

3
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is located as close as possible to the misbehaving agent. We then present numerical examples to depict the

implementation of these theoretical results.

1.3 Main Contributions

The main contributions of this thesis are to demonstrate (1) the experimental validation of recently

proposed distributed adaptive control architecture in [15] on a heterogeneous mechanical platform composed

of two cart-inverted pendulums and a cart to show the efficacy of this architecture in practice, (2) the stability

analysis of multiagent systems having a fixed, connected and undirected graph topology in the presence of

a disturbance without and with a control input, and (3) two methods to derive the steady-state value of

each agent in the multiagent system whose graph topology for the first method is fixed, connected and

undirected and for the second method is a fixed, connected, and undirected acyclic graph. Also, the second

method shows that the largest steady-state deviation from the desired command in the multiagent system is

minimized if the driver agent is located as close as possible to the misbehaving agent.

1.4 Organization

The organization of this thesis is as follows. Chapter 2 presents an experimental study on a het-

erogeneous multiagent mechanical platform to show the efficacy of the proposed distributed controller in

[15]. Chapter 3 proposes a proportional integral controller to robustify the overal closed-loop multiagent

system subject to a disturbance with limited resources. After that, we introduce two methods to derive

the steady-state value of each agent in the multiagent system whose graph topology for the first method is

fixed, connected and undirected and for the second method is a fixed, connected, and undirected acyclic

graph. In addition, the second method is used to show how to minimize the largest steady-state deviation

from the desired command in the multiagent system based on locating the driver agent with respect to the

misbehaving agent. Finally, concluding remarks and future research directions are presented in Chapter 4.

4
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CHAPTER 2: APPLICATION OF A DISTRIBUTED ADAPTIVE CONTROL APPROACH TO A

HETEROGENEOUS MULTIAGENT MECHANICAL PLATFORM1

A distributed adaptive control architecture is recently developed for a class of heterogeneous uncer-

tain multiagent systems [15]. This architecture has the capability to provide uniform ultimate boundedness

for the output tracking error between each heterogeneous uncertain agent and the leader with unknown

dynamics. As a special case, in addition, it allows the output of agents to asymptotically converge to

the output of the leader, which converges to a constant, in the presence of matched disturbances and

time-invariant system uncertainties over fixed and directed communication graph topologies. The main

contribution of this paper is to provide an experimental study on a heterogeneous multiagent mechanical

platform composed of two cart-inverted pendulums and a cart to demonstrate the performance of this

architecture in practice.

2.1 Introduction

Multiagent systems are composed of agents having either same dynamics (called homogeneous

multiagent systems) or different dynamics (called heterogeneous multiagent systems). Controlling these

systems in a distributed fashion is a highly attractive and active research topic since it includes a wide array

of applications such as unmanned aerial vehicles, spacecraft, mobile robots; to name but a few examples.

Over the last two decades, these systems have been studied by many researchers; however, the number

of experimental implementations into many applications is considerably less than the number of papers

related to theoretical studies and contributions in this field. The main contribution of this paper is to provide

an experimental study on a heterogeneous multiagent mechanical platform based on a distributed control

algorithm recently developed by the authors of [15].

On background and literature related to distributed control of heterogeneous multiagent systems,

we refer to [15]. We now outline the key aspects of the new distributed control algorithm presented in [15].

1This chapter is previously published in [21]. Permission is included in Appendix B.
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Specifically, the algorithm in [15] is proposed for a group of heterogeneous uncertain multiagent systems

with a leader having unknown dynamics over fixed and directed communication graph topologies. First,

the uniform ultimate boundedness of the output tracking error between the output of the reference model

of each agent and the output of the leader is theoretically demonstrated. If, in addition, the output of the

leader is either constant or converges to a constant, then the output tracking error goes to zero as time

goes to infinity (Theorem 1, [15]). Second, an agent-wise local sufficient stability condition is presented

(Theorem 2, [15]). Finally, an adaptive controller is designed due to the possible existence of matched

system uncertainties and unknown external disturbances. In this part of [15], uniform ultimate boundedness

Figure 2.1: Considered heterogeneous multiagent mechanical platform.

of the output tracking error between the output of the reference model of each agent and the output of the

corresponding agent is shown. If there exist no unmatched external disturbances for any agent in the graph

and the system uncertainties are time-invariant, then the output of the reference model of each agent is

tracked by the output of each agent asymptotically (Theorem 3, [15]). A concise summary of the sufficient

conditions and assumptions for satisfying those theorems are given later in this paper to be self-contained.

In this paper, we provide an experimental study on a heterogeneous multiagent mechanical platform.

In particular, this platform is composed of two cart-inverted pendulums and a cart, and is used to demonstrate

the distributed adaptive control approach of [15] in practice. Figure 2.1 shows this platform, where the cart-

6
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inverted pendulum on the left represents the first agent, the cart in the middle represents the second agent,

and the cart-inverted pendulum on the right represents the third agent. They clearly form a heterogeneous

multiagent system since the cart in the middle has second-order dynamics, whereas the first and third cart-

inverted pendulums have fourth-order dynamics. Moreover, while the first and third cart-inverted pendulums

share the same order, the long and small pendulums on these carts make them heterogeneous in dynamics.

We present modeling, dynamical equations, and respective control design of this system later in this paper.

2.2 Mathematical Preliminaries

We follow the notation of [15] in this paper. To be self-contained, the set of real numbers is shown

by R, the set of n×1 real column vectors is shown by Rn, the set of n×m real matrices is shown by Rn×m,

and the n×n identity matrix is shown by In. Furthermore, ρ(·) denotes the spectral radius of a square matrix,

(·)T denotes the transpose of a matrix, (·)−1 denotes the inverse of a nonsingular matrix, ‖ · ‖2 denotes the

(induced) 2-norm of a matrix, ‖ · ‖F denotes the Frobenius norm of a matrix, diag(·) denotes block diagonal

function, and “,” denotes equality by definition. Finally, we can define the set of all piecewise continuous

functions u : [0,∞)→ Rm such that ‖u(t)‖L2 =
(∫

∞

0 ‖u(t)‖2
2dt
)1/2

< ∞ as the space L2 [22].

Based on [23], which is adopted in [15], we next highlight the necessary notations related to the

graph theory. Consider a fixed (i.e., time-invariant) directed graph G = (V,E) with V =
{

v1, . . . ,vN
}

being a

nonempty finite set of N nodes and E ⊂V ×V being a set of edges. Specifically, each node in V corresponds

to an agent in the network. There is an edge rooted at node v j and ended at vi, i.e., (v j,vi) ∈ E, if and

only if vi receives information from v j. A = [ai j] ∈ RN×N denotes the adjacency matrix describing the

graph structure; in other words, ai j = 1 if and only if (v j,vi) ∈ E (and ai j = 0 otherwise). Repeated edges

and self loops are not allowed in this paper (aii = 0, ∀i ∈ N with N =
{

1, . . . ,N
}

). The set of neighbors

of node vi is denoted as Ni =
{

j|(v j,vi) ∈ E
}

. In-degree matrix is defined as D = diag(d1, . . . ,dN) with

di = ∑ j∈Ni ai j. In addition, a directed path from node vi to node v j is a sequence of successive edges in the

form
{
(vi,vp),(vp,vq), . . . ,(vr,v j)

}
, where a directed graph is said to have a spanning tree when there is a

root node such that it has directed paths to all other nodes in the graph. We denote the fixed augmented

directed graph by Ḡ = (V̄ , Ē) with V̄ =
{

v0,v1, . . . ,vN
}

being the set of N + 1 nodes, including the leader

node v0 and all nodes in V , and Ē = E ∪E ′ is the set of edges with E ′ consisting of some edges in the form

of (v0,vi), i ∈N .
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Finally, we state the projection operator used in the results of this paper, where we refer to, for

example, [24], [15] for details. Specifically, let f :Rn−→R be a continuously differentiable convex function

given by f (θ), (1+εθ )θ
Tθ−θ 2

max
εθ θ 2

max
, where θmax > 0 being the projection norm bound; that is ‖θ‖2 ≤ θmax. The

projection tolerance is denoted as εθ > 0 and we can define the projection operator as

Proj(θ ,y) ,


(

In− f (θ)
(∇ f (θ))TΓ∇ f (θ)Γ∇ f (θ)(∇ f (θ))T

)
y if f (θ)> 0 and yT∇ f (θ)> 0,

y, otherwise,
(2.1)

with y ∈ Rn, Γ ∈ Rn×n being a positive-definite matrix, and ∇ f (θ) = 2(1+εθ )
εθ θ 2

max
θ . The projection operator can

be implemented in a matrix form as,

Projm(Θ,Y ) = (Proj(col1(Θ),col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))), (2.2)

with Θ ∈ Rn×m,Y ∈ Rn×m, and col j(·) being jth column operator. For convenience, it is assumed that θmax

is the projection norm bound on each column of Θ ∈Rn×m. Once again, we refer to, for example, [24], [15]

for the properties associated with the projection operator given by (2.1) and by (2.2).

2.3 Problem Setup

In Sections 2.3 and 2.4, the essential parts presented in [15] are concisely summarized in order

to pave the way for bridging theoretical aspect of [15] and the experimental results of this paper. To begin

with, a set of N agents is considered, which have heterogeneous uncertain dynamics over a fixed and directed

communication graph topology G with the dynamics of each agent i satisfying

ẋi(t) = Aixi(t)+Bi[ui(t)+∆i(t,xi(t))]+δi(t), xi(t0) = xi0, t ≥ t0, (2.3)

yi(t) = Cixi(t). (2.4)

Here, xi(t) ∈ Rni denotes the state, ui(t) ∈ Rmi denotes the input, yi(t) ∈ Rl denotes the output, Ai ∈

Rni×ni denotes the known system matrix, Bi ∈ Rni×mi denotes the known input matrix, and Ci ∈ Rl×ni

denotes the known output matrix. Furthermore, ∆i : [t0,∞)×Rni → Rmi represents a matched system

uncertainty and δi(t) ∈ Rni stands for possible unknown external disturbances. To be consistent with the
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results presented in [15], the following assumptions are given for matched system uncertainty and unknown

external disturbances.

Assumption 1 (Structured Uncertainty Parameterization). The time-varying and state dependent

matched system uncertainty in (2.3) is linearly parameterized as ∆i(t,xi) = W T
i (t)σi(xi), xi ∈ Rni . Here,

Wi(t)∈Rsi×mi denotes the unknown time-varying weight matrix whose columns bounded (i.e.,‖col jWi(t)‖2

≤ Wmaxi√
1+εθ

, j = 1, . . . ,mi, ∀t ≥ t0, ∀i ∈ N ), and its derivative is piecewise continuous and bounded (i.e.,

‖Ẇi(t)‖F ≤ ẇi, ∀t ≥ t0, ∀i ∈ N ). In addition, σ : Rni → Rsi denotes a known basis function of the form

σi(xi) = [σi1(xi), . . . ,σisi(xi)]
T with its components being locally Lipschitz in xi. Finally, one can write

‖Wi(t)‖F ≤ wi, wi =
√

mi
1+εθ

Wmaxi, ∀t ≥ t0, ∀i ∈N .

Assumption 2 (Boundedness of the Disturbance). There exists a nonnegative constant αi such that

‖δi(t)‖2 ≤ αi < ∞, ∀t ≥ t0, ∀i ∈N .

Next, note that the unknown dynamics of the leader can be either linear or nonlinear with any

dimension under the circumstances of having a unique solution. Now, we define the output tracking error as

ei(t) , yi(t)− y0(t). (2.5)

with yi(t) ∈ Rl and y0(t) ∈ Rl being the output of the ith agent and the leader, respectively. If an agent vi

receives information from the leader v0, an edge (v0,vi) with weighting gain ki = 1 exists; otherwise, ki = 0.

Finally, the objective of [15] is to make the output tracking error between the leader and each

agent uniformly ultimately bounded through establishing a distributed adaptive control architecture ui(t).

In addition, the output of each agent asymptotically converges to the output of the leader if the unknown

weight matrix is constant, the basis function has a bias term, unmatched external disturbances do not exist,

and either the output of the leader is constant or it converges to a constant vector. In order to accomplish

this objective, the following assumptions1 are made in [15].

Assumption 3 (Boundedness of the Output of the Leader and its Derivative). There exist nonnega-

tive constants β and β̇ such that ‖y0(t)‖2 ≤ β < ∞ and ‖ẏ0(t)‖2 ≤ β̇ < ∞ for all t ≥ t0.

Assumption 4 (Connectedness of the Augmented Graph). The augmented graph Ḡ has a spanning

tree, where the leader node is the root node.

1With the approach in [25], Assumption 5 becomes redundant. However, we keep it in this paper to be consistent with the
presentation of [15].
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Assumption 5 (Nonsingular Matrix Conditions). There exist K1i and K2i such that Ami , Ai−

BiK1i ∈ Rni×ni and Bmi ,−BiK2i ∈ Rni×l with Ami and CiA−1
mi Bmi being nonsingular for all i ∈N .

Assumption 6 (Stabilizability). For all i ∈N , the pair (Ai,Bi) is stabilizable.

Assumption 7 (A Rank Condition). Each agent satisfies rank

Ai Bi

Ci 0

= ni + l.

2.4 Distributed Control Algorithm

2.4.1 Reference Model Design

We now summarize the reference model design presented in [15], which utilizes (yri(t)−yr j(t)) for

all j ∈ Ni. Mathematically speaking, dynamics of the reference model of each agent i is given by

ẋri(t) = Amixri(t)+Bmizri(t), xri(t0) = xri0, t ≥ t0, (2.6)

żri(t) =
1

di + ki

[
∑
j∈Ni

ai j
(
yri(t)− yr j(t)

)
+ ki

(
yri(t)− y0(t)

)]
, zri(t0) = zri0, t ≥ t0, (2.7)

yri(t) = Cixri(t). (2.8)

Here, xri(t)∈Rni denotes the reference state, zri(t)∈Rl denotes the reference integrator state, and yri(t)∈Rl

denotes the reference output. For notational convenience, we define

eri(t) , yri(t)− y0(t), (2.9)

as the output tracking error between the output of each reference model and the output of the leader.

Remark 1 (Global Sufficient Stability Condition for eri(t)) (Theorem 1, [15]). Let Assumptions 3,

4 and 5 hold. If the resulting closed-loop system matrix is Hurwitz, then Theorem 1 of [15] guarantees that

eri(t) is uniformly ultimately bounded for all i ∈ N . If, in addition, the output of the leader is a constant

or limt→∞ y0(t) = r? ∈ Rl (r? is finite) and ẏ0(t) is uniformly continuous on [0,∞) or limt→∞ ẏ0(t) = 0, then

one can also conclude that limt→∞ eri(t) = 0, ∀i ∈N .

In practice, it is also important to have an agent-wise local sufficient condition that yields the

resulting closed-loop system matrix being Hurwitz. Once again, following the results in [15], we now

provide a summary on this point. For this purpose, let ξri(t) ,
[
xT

ri(t),z
T
ri(t)

]T for all i ∈ N and F ,

diag
(

1
d1+k1

, . . . , 1
dN+kN

)
. We can then write the dynamics of each reference model given by (2.6) and (2.7)
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as

ξ̇ri(t) = (Āi− B̄iK̄i)ξri(t)+Bfiµi(t), ξri(t0) = ξri0, t ≥ t0. (2.10)

Here, Āi =

Ai 0

Ci 0

, B̄i =

Bi

0

, K̄i = [K1i, K2i], Bfi =

 0

−Il

, and µi(t) = 1
di+ki

[
∑ j∈Ni ai jyr j(t)+ kiy0(t)

]
.

We can also restate the dynamics of each reference model with the output equation as

ξ̇ri(t) = Afiξri(t)+Bfiµi(t), ξri(t0) = ξri0, t ≥ t0, (2.11)

yri(t) = Cfiξri(t), (2.12)

with Afi =

Ami Bmi

Ci 0

 and Cfi = [Ci, 0]. One can now write

gi(s) =Cfi(sI−Afi)
−1Bfi, (2.13)

which denotes the transfer matrix from µi(t) to yri(t). From [15] and (Lemma 1.26, [26]), there always exist

such K1i and K2i for ensuring Afi being Hurwitz by Assumptions 6 and 7. If Afi is Hurwitz for each agent in

G, then the system given in (2.11) and (2.12) is L2 stable with finite gain (Theorem 5.4, [22])

γi = sup
ω∈R
‖gi( jω)‖2 < ∞, ∀i ∈N . (2.14)

Remark 2 (Agent-wise Local Sufficient Stability Condition) [25], [27]. Let Assumption 4 hold and

Afi be Hurwitz for all i ∈ N . Then, the resulting closed loop system matrix obtained from (2.6), (2.7) and

(2.8) is Hurwitz when

γiρ(FA)< 1, ∀i ∈N . (2.15)

2.4.2 Adaptive Controller Design

Next, a concise overview of the adaptive control design in [15] is given. In particular, define

ỹi(t) , yi(t)− yri(t), (2.16)

11
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as the output tracking error, which is between the output of each agent and the output of each corresponding

reference model. To demonstrate the uniform ultimate boundedness of the output tracking error between

each agent and the leader, the uniform ultimate boundedness of ỹi(t) is first shown. To this end, each agent

in G is assumed to have access to
(
yi(t)−yr j(t)

)
for all j ∈ Ni, where the controller of an agent has the form

ui(t) =−K1ixi(t)−K2izi(t)︸ ︷︷ ︸
uni(t)

−Ŵ T
i (t)σi(xi(t))︸ ︷︷ ︸

uadi(t)

. (2.17)

Here, uni(t) denotes the nominal controller and it is augmented by uadi(t), which stands for the adaptive

controller. Moreover, Ŵi(t)∈Rsi×mi denotes the estimate of Wi(t) and zi(t)∈Rl denotes the integrator state.

Letting W̃i(t),Wi(t)−Ŵi(t), one can equivalently rewrite (2.3) as

ẋi(t) = Amixi(t)+Bmizi(t)+BiW̃ T
i (t)σi(xi(t))+δi(t), xi(t0) = xi0, t ≥ t0, (2.18)

under the Assumption 1 with utilizing the controller ui(t) in (2.17). In addition, the dynamics of the

integrator satisfies

żi(t) =
1

di + ki

[
∑
j∈Ni

ai j
(
yi(t)− yr j(t)

)
+ ki

(
yi(t)− y0(t)

)]
, zi(t0) = zi0, t ≥ t0. (2.19)

The matrix Afi must be made Hurwitz for all i ∈ N based on (Theorem 2, [15]). Therefore, we

can obtain a unique positive-definite matrix solution Pi ∈ R(ni+l)×(ni+l) to the Lyapunov equation AT
fiPi +

PiAfi = −Qi for every given positive-definite matrix Qi ∈ R(ni+l)×(ni+l). We now define ξ̃i(t) ,
[
(xi(t)−

xri(t))T,(zi(t)− zri(t))T
]T and provide an estimate of the unknown time-varying weight matrix Wi(t) with

the weight update law satisfying

˙̂Wi(t) = Projm(Ŵi(t),ΓWiσi(xi(t))ξ̃ T
i (t)PiB̄i), Ŵi(t0) = Ŵi0, t ≥ t0. (2.20)

Here, ΓWi ∈ Rsi×si denotes adaptive gain matrix, which is positive-definite. From [24], [15], the uniform

boundedness of the adaptive gain matrix column-wise is guaranteed by the projection operator.

Remark 3 (Uniform Ultimate Boundedness of ỹi(t)) (Theorem 3, [15]). If we follow (2.3) and

(2.4) with Assumptions 1 and 2 for all i ∈ N , reference models of these agents given in (2.6), (2.7), and

(2.8) that satisfy Remarks 1 and 2, the control law shown in (2.17), and the weight update law as given in
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Table 2.1: The summary of the distributed adaptive control law.

Open-loop plant ẋi(t) = Aixi(t)+Bi[ui(t)+∆i(t,xi(t))]+δi(t)
yi(t) =Cixi(t)

Reference model ẋri(t) = Amixri(t)+Bmizri(t)

żri(t) = 1
di+ki

[
∑ j∈Ni ai j

(
yri(t)− yr j(t)

)
+ ki

(
yri(t)− y0(t)

)]
yri(t) =Cixri(t)

Control law ui(t) =−K1ixi(t)−K2izi(t)−Ŵ T
i (t)σi(xi(t))

Distributed integrator żi(t) = 1
di+ki

[
∑ j∈Ni ai j

(
yi(t)− yr j(t)

)
+ ki

(
yi(t)− y0(t)

)]
Weight update law ˙̂Wi(t) = Projm(Ŵi(t),ΓWiσi(xi(t))ξ̃ T

i (t)PiB̄i)

Lyapunov equation AT
fiPi +PiAfi =−Qi

(2.20), the uniform ultimate boundedness of ỹi(t) can be shown. Furthermore, if the unknown weight matrix

is constant when the basis function has a bias term and unmatched external disturbances do not exist for all

i ∈N , then limt→∞ ỹi(t) = 0, ∀i ∈N .

As noted in [15], we also highlight the following. The output tracking error ei(t) = ỹi(t)+ eri(t) is

uniformly ultimately bounded since eri(t) and ỹi(t) are both uniformly ultimately bounded. In addition, if the

basis function has a bias term when the unknown weight matrix is constant, unmatched external disturbances

do not exist for each agent i in G and limt→∞ ẏ0(t) = 0, then limt→∞ ei(t) = 0, ∀i ∈N . Finally, the summary

of the distributed adaptive control law overviewed above is given in Table 2.1.

2.5 Experimental Setup

The experimental setup, which we apply the proposed distributed control algorithm overviewed in

Section 2.4 is shown in Figure 2.1. The setup is comprised of two cart-inverted pendulums and a cart, a

track (102 [cm]), a Q8-USB data acquisition board (i.e., digital to analog converter), and two amplifiers,

which are VoltPAQ-X1 and VoltPAQ-X2. Each cart is equipped with a DC motor, which enables carts to

move only in x direction. In addition to the movement of the cart in horizontal direction, pendulums are

able to rotate 360 [deg] in x-y plane. The desired position of the cart and the stability of pendulums are

provided by the motors. From sensing point of view, each cart can access the angle of pendulum as well
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as the position of the cart with the help of sensors (encoders), which are placed on each cart. The angular

velocity of pendulums and the velocity of carts are calculated by derivative filters, which are provided by

the manufacturer, Quanser, of this setup [1]. In addition, initial positions of each cart and initial angle of

each pendulum are determined by sensors as zero at the beginning of the experiment. The controller of each

agent becomes activated when the pendulum of the cart is raised to the upright position. If the cart does not

have a pendulum, then it is activated manually.

A schematic of the experimental setup is shown in Figure 2.2, where the cart-inverted pendulum

on the left denotes the first agent, the cart in the middle denotes the second agent, and the cart-inverted

pendulum on the right denotes the third agent. We consider that these agents communicate each other and

exchange the information required by the distributed adaptive control architecture with respect to the graph

topology shown in Figure 2.3, which clearly satisfies Assumption 4. Agents are experimentally expected to

not only follow the output of the leader but also stabilize the pendulums as long as they have pendulums.

We first begin by presenting the equations of motion of this experimental setup. Since the first and

the third agents have pendulums, they have 4 state variables, which are the position and the velocity of the

cart as well as the angle and the angular velocity of the pendulum. Moreover, the second agent has only the

position and the velocity of the cart. Base dynamical models, notations, and parameters of the system are

obtained from the user manual of the manufacturer. Finally, the linearized dynamical model for each agent

𝑀𝑀1

𝜃𝜃1

𝑢𝑢1

𝑥𝑥1

𝐽𝐽p1,𝑚𝑚p1

𝑦𝑦1

𝑢𝑢2

𝑥𝑥2

𝑦𝑦2
𝜃𝜃3

𝑢𝑢3

𝑥𝑥3

𝐽𝐽p3,𝑚𝑚p3

𝑦𝑦3

𝑀𝑀2 𝑀𝑀3

Figure 2.2: Schematic of the experimental setup.

14



www.manaraa.com

is represented in the form given by

ẋi(t) = Aixi(t)+Biui(t), xi(0) = xi0, t ≥ 0, (2.21)

10

2

3

Figure 2.3: Graph topology between agents and the leader.

where



ẋ1(t)

θ̇1(t)

ẍ1(t)

θ̈1(t)


=



0 0 1 0

0 0 0 1

0
m2

p1l2
p1g

Jt1

−(Jp1+mp1l2
p1)(r

2
mpRmBeq+KmτgK2

g τmKt)

r2
mpRmJt1

−mp1lp1Bp1
Jt1

0 (Jeq1+mp1)lp1mp1g
Jt1

−(mp1lp1)(r2
mpRmBeq+KmτgK2

g τmKt)

r2
mpRmJt1

−(Jeq1+mp1)Bp1
Jt1


︸ ︷︷ ︸

A1



x1(t)

θ1(t)

ẋ1(t)

θ̇1(t)



+



0

0
(Jp1+mp1l2

p1)τgKgτmKt

rmpRmJt1

(mp1lp1)τgKgτmKt
rmpRmJt1


︸ ︷︷ ︸

B1

u1(t), y1 =

[
1 0 0 0

]
︸ ︷︷ ︸

C1



x1(t)

θ1(t)

ẋ1(t)

θ̇1(t)


(2.22)

ẋ2(t)

ẍ2(t)

=
0 1

0
−(BeqRmr2

mp+τgK2
g KmτmKt)

Rmr2
mpJeq2


︸ ︷︷ ︸

A2

x2(t)

ẋ2(t)

+
 0

τgKgτmKt
RmrmpJeq2


︸ ︷︷ ︸

B2

u2(t), y2 =

[
1 0

]
︸ ︷︷ ︸

C2

x2(t)

ẋ2(t)

 (2.23)
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A3



x3(t)
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ẋ3(t)

θ̇3(t)



+



0

0
(Jp3+mp3l2

p3)τgKgτmKt

rmpRmJt3

(mp3lp3)τgKgτmKt
rmpRmJt3


︸ ︷︷ ︸

B3

u1(t), y3 =

[
1 0 0 0

]
︸ ︷︷ ︸

C3



x3(t)

θ3(t)

ẋ3(t)

θ̇3(t)


(2.24)

with Jeqi = Mi+
τgK2

g Jm

r2
mp

and Jti = JeqiJpi+Jeqimpil2
pi+mpiJpi. The variable ui(t) denotes the voltage, which is

given into the cart as a control input. The variable xi(t) and θi(t) denote the position of the cart and the angle

of the pendulum, respectively. All the parameters in the experimental setup highlighted above are shown

in Tables 2.2 and 2.3. After inserting all numerical values of the parameters in the experimental setup into

(2.22), (2.23), and (2.24), we obtain Ai,Bi, and Ci matrices for all i ∈ N . These Ai,Bi, and Ci matrices for

each agent satisfy Assumptions 6 and 7.

Table 2.2: Notations used in dynamical modeling.

τm

τg

Kg

Kt

Km

Rm

g

Motor Efficiency
Planetary Gearbox Efficiency
Planetary Gearbox Gear Ratio

Motor Current Torque Constant
Motor Back-emf Constant

Motor Armature Resistance
Gravitational Constant on Earth

Jpi

mpi

Mi

Beq, Bpi

lpi

rmp

Jm

Pendulum Inertia
Mass of Pendulum with T fitting

Mass of Cart
Equivalent Viscous Damping Coefficient at the cart and at the pendulum

Pendulum Length
Motor Pinion Radius

Rotor Moment of Inertia

Table 2.3: System parameters [1].

τm

τg

Kg

Kt

Km

Rm

g

1
1

3.71
7.68×10−3 Nm/A

7.68×10−3 V/(rad/s)
2.6 Ω

9.79 m/s2

Jp1, Jp3

mp1, mp3

M1=M2=M3

Beq, Bp1=Bp3

lp1, lp3

rmp

Jm

7.88×10−3, 1.20×10−3 kgm2

0.23,0.127 kg
0.507 kg

4.3, 0.0024 Nms/rad
0.6413, 0.3365 m

6.35×10−3m
3.9×10−7kgm2

16



www.manaraa.com

2.6 Experimental Results

In this section, we present the experimental results on the multiagent mechanical platform shown in

Figure 2.1 in order to demostrate the efficacy of the proposed distributed adaptive architecture. In particular,

we present the steps we take to design the proposed distributed adaptive controller for each agent. Then, we

compare the following two cases:

(i) The adaptive augmentation is off (i.e., ui(t) = uni(t)).

(ii) The adaptive augmentation is on (i.e., ui(t) = uni(t)−uadi(t) as in (2.17)).

In our mechanical experimental platform shown in Figure 2.1, the main source of uncertainty is due

to the friction. As it is known, system uncertainties can degrade the performance of physical systems. For

instance, using a simple model of viscous friction (kinetic friction) or underestimating the size of a friction

coefficent in the modeling of an inverted pendulum system can result in oscillative or even unstable system

responses [28]. In our system, kinetic and static frictions are treated as unknown. In addition to the friction,

it is also observed while conducting the experiment that the cables connecting carts to the amplifiers and

the digital analog converter may impact the system performance; hence, they represent other uncertainty

sources.

In what follows, we first obtain the parameters of nominal controller for each agent through a linear

quadratic regulator-based design with solving the associated algebraic Riccati equation. These parameters

(i.e., K1i and K2i ) are listed in Table 2.4. They guarantee that Afi is Hurwitz and the agent-wise local

sufficient condition (2.15) holds for all i ∈ N =
{

1,2,3
}

. Now, we construct the dynamics of the reference

model for each agent based on (2.6), (2.7), and (2.8). Second, the parameters of the adaptive controller for

each agent are selected as follows. The term Pi in the weight update law (2.20) is obtained by selecting Qi

in the Lyapunov equation as an identity matrix for i = 1,2,3. The basis function in the weight update law of

each agent has a bias term and is written in a compact form in Table 2.4. The adaptive gain matrix ΓWi , the

projection tolerance εθ , and the projection norm bound Wmaxi of each agent are listed in Table 2.4. Finally,

we select the value of Γ in projection operators of each agent as being equal to ΓWi .

Let the unknown dynamics of the leader be given by

ẏ0(t) =−y0(t)+ c(t), (2.25)

which satisfies Assumption 3, where
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Table 2.4: Experimental parameters.

K11,K21

K12,K22

K13,K23

σi(.) for i = 1,3
σi(.) for i = 2

[−61.7064,137.1485,−47.1679,25.3439], [−20]
[323.5980,18.6588], [141.4214]

[−35.5580,61.6055,−27.9752,8.7089], [−12.2474]
[1,xi,θi, ẋi, θ̇i]

T

[1,xi, ẋi]
T

ΓW1

ΓW2

ΓW3

Wmax1 =Wmax2 =Wmax3

εθ

diag (420,350,350,350,350)
diag (5,5,5)

diag (448,336,224,168,28)
2

0.01

c(t) =


10 if 10+70k > t ≥ 10+70(k−1), where k=1,3,5,7,

-10 if 10+70k > t ≥ 10+70(k−1), where k=2,4,6.

Note that the first 10 seconds are not given here since the experimental plots associated with that time

interval are only related to system initialization. Moreover, since our experimental setup consists of three

agents, instantaneously activating the adaptive controller of each agent manually during the experiment is

not trivial; hence, this activation time interval is showed in the shaded areas of all the following figures.
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                       Adaptive Augmentation Off                                                     Adaptive Augmentation On                                              

Figure 2.4: Tracking performances of each agent without and with the adaptive augmentation.

Figure 2.4 shows the trajectory of the leader and the tracking performances of each agent without and with

the adaptive augmentation. When the adaptive augmentation is off, agents track the output of the leader

with large amplitude of oscillations primarily due to the effect of the friction. After activating the adaptive

controller, the amplitude of oscillations are substantially decreased as it is seen in Figure 2.4. In Figures 2.5,
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2.6, and 2.7, the trajectories of the reference model of each agent in conjunction with the outputs of each

agent without and with the adaptive augmentation are shown for i = 1,2,3. It is clear that the third agent

with the adaptive controller shows the most significant improvement in terms of decreasing the amplitude of

oscillations among all agents. Note also that the response of the second agent without and with the adaptive

augmentation is nearly indistinguishable. Figure 2.8 shows the deviations of the first and the third pendulums

from the desired angle, which is zero degree, without and with the adaptive augmentation. One important

feature in Figure 2.8 is that the improvement in terms of decreasing the amplitude of the deviations of the

pendulums from the desired angle is consistent with the improvement in the outputs of the first and the third

agents (the output tracking error) in Figures 2.5 and 2.7.
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                   Adaptive Augmentation Off                                                        Adaptive Augmentation On            

Figure 2.5: The reference model tracking performance of the first agent without and with the adaptive
augmentation.

We can see the applied control inputs into the agents in Figure 2.9 corresponding to the results in

Figures 2.4, 2.5, 2.6, 2.7, and 2.8. It is apparent from Figure 2.9 that a slight increase is seen on the amplitude

of the voltage (control input) applied to the first agent after activating the adaptive controller. On the other

hand, the frequency of the voltage implemented to the third agent increases after turning on the adaptive

controller. The Euclidean norm of the estimated weight of each agent is shown in Figure 2.10. Since the

norm of the estimated weight of the second agent is so small, it is seen like a line on the horizontal axis of
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Figure 2.6: The reference model tracking performance of the second agent without and with the adaptive
augmentation.
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Figure 2.7: The reference model tracking performance of the third agent without and with the adaptive
augmentation.

the second plot. On the other hand, the norms of the estimated weight of the first and the third agents hit

their projection norm bounds Wmax1 and Wmax3 during the experiment.
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Figure 2.8: Angle of the pendulums of the first and the third agents without and with the adaptive
augmentation.
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Figure 2.9: Applied control inputs to each agent without and with the adaptive augmentation.

2.7 Conclusions

This paper presented experimental evaluation of a recently proposed distributed adaptive controller

approach [15] on a heterogeneous multiagent mechanical platform. Experiments revealed that the adaptive

augmentation of the controller suppressed the effect of the uncertainties and disturbances effectively. In

21



www.manaraa.com

50 100 150 200 250 300 350 400 450 500
0

1

2

           Adaptive Augmentation off                                                             Adaptive Augmentation on                               

50 100 150 200 250 300 350 400 450 500
0

1

2

50 100 150 200 250 300 350 400 450 500
0

1

2

Figure 2.10: The Euclidean norm of the estimated weight of each agent.

particular, the tracking results with the adaptive augmentation outperforms the ones with the nominal

controller. Future research can include experimentation on a group of mobile robots evolving in two- and

three-dimensional spaces.
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CHAPTER 3: CONTROLLING THE MULTIAGENT SYSTEM WITH LIMITED RESOURCES

IN THE PRESENCE OF A MISBEHAVING AGENT

In this paper, we focus on multiagent systems that involve agents executing local information

exchange predicated on the Laplacian matrix. For this class of systems, it is known that a small perturbation

may result in unstable behavior due to their nominal stability properties. In particular, unlike the existing

results proposing controllers for each agent separately to robustify the overall closed-loop multiagent system

subject to a disturbance, we investigate the case in which a limited number of control inputs can be applied

to the agents (i.e., driver agents) in the system under the disturbance (we specifically focus on only one

control input). To this end, we first show that the trajectories of all agents in the multiagent system with

a fixed, connected, and undirected graph, where the system subject to a bounded disturbance through an

agent, remain bounded with only one control input having a bounded command regardless of which agent

we apply the control input. The steady-state values of these agents are then derived when the control input is

applied to an undisturbed agent and a disturbed (i.e., misbehaving) agent, respectively. Finally, we propose

a graph-theoretical approach for multiagent systems having a fixed, connected, and undirected acyclic graph

that gives the steady-state values of all agents. This approach provides a way to show that the largest steady-

state deviation from the desired command in the multiagent system is minimized if the driver agent is located

as close as possible to the misbehaving agent. Several numerical examples are also presented to illustrate

the implementation of our theoretical results.

3.1 Introduction

Multiagent systems consist of groups of agents, which process the distributed information and work

cooperatively through a graph topology. Distributed control of these systems has been an active research

topic in the recent decades owing to their broad applications such as mobile robots and unmanned aerial

vehicles (e.g., see [29], [23], [30] and references therein). Technological developments in networking and

producing electromechanical systems in a miniature scale pave the way for controlling large scale systems
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with the distributed control law. The use of distributed control provides the scalability and flexibility to

these large scale multiagent systems. However, the lack of monitoring and controlling each agent from

the central authority makes the multiagent system using distributed control susceptible to cyber-attacks

and malfunctions [16]. In the literature, there has been ample studies for scenarios, where the system is

subject to a disturbance and each agent is equipped with advanced controllers in addition to neighbor-based

controllers (e.g., see [31], [32], [33], and [17]). Then, a natural question that arises is how to control a large

scale multiagent system composed of agents having neighbor-based local controllers without implementing

as many advanced controllers (i.e., limited resources) as previous studies if the system is subject to a

disturbance (i.e. a cyber-attack or malfunction).

Our problem is motivated by many applications. In particular, sensor networks are a great example

for large scale systems, which are prone to have malfunctioning sensors. Sensor networks are composed

of a huge number of low-cost, wireless and small battery-powered sensors that are densely placed in order

to take a measurement of their environment and relay the data to a central processor (fusion center) by

wireless links. Since these low-cost sensors have the small size and are subject to energy constraints, their

capabilities in terms of signal processing, data transmission, and storing data are limited. Due to undesired

environmental effect and hardware or software failures, some sensors may stop functioning or may work

improperly and relay false data in the network [19]. When a sensor starts to malfunction, it (misbehaving

agent) provides false value to its sensor neighbors and this results in dragging the whole system towards the

faulty sensor value [20].

To support the motivation, we give the second example. The use of multiple unmanned vehicles

instead of a single vehicle for large scale operations is more advantageous in terms of addressing given

missions faster in time. Every member of the group of unmmanned vehicles has a common goal and works

collectively to achive that mission objective. A group of unmanned vehicles is used for various large scale

important cooperative missions such as exploration of landmine fields [34], forest-fire surveillance [35],

and border patrol [36]. Due to hazardous environment and dangerous activities, these low-cost unmanned

vehicles in the multiagent system may stop working or may not work properly [37]. This cause a bias effect

to the whole multiagent system similar to the sensor networks and pull the network to undesired point.

Lastly, other examples come from power systems and biology, respectively. Due to high cost of

fossil fuels and environmental challenges, distibuted generators have been emerging among power industry.

Even though a distributed generator produces considerable less energy comparing to a fossil fuel power
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plant, a cluster of these generators deliver sufficient electric energy to domestic customers. However,

these systems are vulnerable to cyber-attacks and communication failures [38], [39]. Human brain is

a large complex system composed of a great number of neurons connected to each other, which form

of a specialized clusters. The advancement of neuroimaging technology paved the way for obtaining

full information about the human connectome and identify the changes related to brain diseases such as

Parkinson’s disease, Schizophrenia, and epilepsy. Due to these diseases, some brain regions function

improperly (malfunctioning) and these parts of the human brain propagate the effect of the disease by

relaying disordered information (false data) to healthy brain regions via neural connections. This results

in continuing anatomical network disruption [40] - [42].

The contribution of this paper is to address the problem stated in the first paragraph. We first

show that a multiagent system composed of agents only processing the distributed information based on

the Laplacian matrix shows unstable behavior with a small perturbation. Then, we propose a proportional

integral controller for a driver agent to make the resulting closed-loop system matrix of the multiagent

system Hurwitz. After that, we introduce two methods to derive the steady-state value of each agent in

the multiagent system whose graph topology for the first method is fixed, connected and undirected and

for the second method is a fixed, connected, and undirected acyclic graph. While the second method is

applicable to only the acyclic graph, it does not require an inverse of a matrix dependent on the graph

topology. Additionally, the second method demonstrates that the largest steady-state deviation from the

desired command in the multiagent system is minimized if the driver agent is located as close as possible to

the misbehaving agent.

This paper is organized as follows. In Section 3.2, we introduce the mathematical and graph-

theoretical notations. In Section 3.3, we formulate the problem based on the question in the introduction

and present the stability analysis of the multiagent system in the presence of a disturbance without an

agent, where the control input is applied. We then show that the resulting closed-loop system matrix of

the multiagent system is Hurwitz with a control input and the steady-state value of the multiagent system

subject to a disturbance with an agent, where the control input is applied, is obtained by using the first

method in Section 3.4. In Section 3.5, we propose a second method to obtain the steady-state value of each

agent in the system and also show that the largest steady-state deviation from the desired command in the

multiagent system is minimized if the driver agent is located as close as possible to the misbehaving agent.

Illustrative numerical examples are given in Section 3.6 to show that the theoretical results proposed in this
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paper matches the values obtained from numerical examples. Finally, concluding remarks are summarized

in Section 3.7.

3.2 Mathematical Preliminaries

Throughout this paper, we use the following notation. Specifically, R and R>0 denote the set of real

and positive real numbers, respectively. Moreover, the set of n×1 real column vector is denoted by Rn, the

set of n×1 real column vector of all ones is denoted by 1n, the set of n×m matrix is denoted by Rn×m, and

the n×n identity matrix is denoted by In. Furthermore, (·)T denotes the transpose of a matrix, (·)−1 denotes

the inverse of a nonsingular matrix, |x| denotes the absolute value of a real number x, and, denotes equality

by definition. Finally, diag(a1, ..,an) denotes a diagonal matrix with scalar entries a1, ...,an on its diagonal.

We now present the graph-theoretical notation and facts used in this paper, which is based on [29]

and [43]. A nonempty, fixed (i.e., time-invariant), and undirected graph G is defined as the pair G = (V,E),

where V = {v1, . . . ,vn} is a nonempty finite set of n nodes (or vertices) and E ⊆ [V ]2 is a set of edges (i.e.,

the elements of E are 2-element subsets of V ). The number of vertices of G is its order, written as |G|. The

union of two graphs G and G′ = (V ′,E ′) is defined as G ∪G′ = (V ∪V ′,E ∪E ′). We refer to vertices and

edges of G as V (G) and E(G), respectively, and an edge {vi,v j} is written as ei j (or e ji). Two vertices vi,v j

of G are adjacent (or neighbors) if ei j ∈ E(G). The set of neighbors of a vertex vi is denoted by N(vi) and

defined by N(vi) = {v j ∈V (G) : ei j ∈ E(G)}. A path P of length r from vl to v j (or between vl and v j) in G

is a sequence of r+1 distinct vertices starting with vl (or v j) and ending with v j (or vl) such that consecutive

vertices are adjacent. Note that r is allowed to be zero, so a path can consist of only one vertex. In the

previous definition, if e jl ∈ E(G) and e jl 6∈ E(P), then P∪ e jl is called a cycle in G. An acyclic graph is a

graph with no cycles. The distance dG(vl,v j) between two vertices vl and v j in G is the length of a shortest

path between vl and v j; if no such path exists, set dG(vl,v j) , ∞. The graph G is called connected if there

exists a path between any two of its vertices. Moreover, the adjacency matrix A(G)=[ai j]∈Rn×n is defined

as follows: ai j = 1 if ei j ∈ E(G) and ai j = 0 otherwise. The degree and the Laplacian matrices are defined as

D(G) = diag(d1, . . . ,dN) with di = ∑v j∈N(vi) ai j for all vi ∈V (G) and L(G) = D(G)−A(G), respectively. By

definition, L(G) has zero row sums (i.e., L(G)1n = 0). It is also known that L(G) is positive semidefinite.

The graph G is connected if, and only if, the second smallest eigenvalue of L(G) is in R>0.
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3.3 Problem Formulation

In this paper, we focus on multiagent systems in the presence of a misbehaving agent. To formulate

our problem, let this system be composed of n single integrator interconnected agents over a fixed, con-

nected, and undirected graph G, where each agent is denoted by a distinct node vi in G. Every agent has

access to the relative state information with respect to its neighbors. Moreover, agents can be categorized

into 3 groups: The driver agent, where the control input is applied, the misbehaving agent, which is

subject to the disturbance, and floating agents, which are directly exposed to neither the control input

nor the disturbance. Specifically, an agent can be considered the misbehaving agent and the driver agent

simultaneously if the agent is exposed to both the disturbance and the control input.

Mathematically, let xi(t) ∈ R denote the state of each agent in G. This system can be compactly

represented in the form given by

ẋ(t) = −L(G)x(t)+bu(t)+dw(t), x(0) = x0, t ≥ 0 (3.1)

y(t) = bTx(t), (3.2)

where x(t) = [x1(t), . . . ,xn(t)]T ∈Rn denotes the aggregated state vector, u(t) ∈R denotes the control input,

w(t) ∈ R denotes the disturbance, and y(t) ∈ R denotes the output (i.e., the state of the driver agent).

Furthermore, b∈Rn determines the driver agent and d ∈Rn determines the misbehaving agent. In particular,

b is the unit vector with a 1 in the kth element, where the control input is applied to only the kth agent.

Similarly, d is also a unit vector with a 1 in the lth element, where only the lth agent in the multiagent system

is subject to the disturbance.

To motivate our problem, we first illustrate the case, in which a control input is not applied to the

system (3.1). In this case, (3.1) reduces to

ẋ(t) =−L(G)x(t)+dw(t), x(0) = x0, t ≥ 0, (3.3)

where w(t) is a piecewise continuous function of time. If the disturbance satisfies limt→∞

∫ t
0 w(τ)dτ =±∞1,

then x(t) is unbounded as t→ ∞.

1We consider this in the extended real number system. Note that nonzero constant functions automatically satisfy this
condition.
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Figure 3.1: The graph topology of the multiagent system composed of 16 agents.

Consider the given system (3.3). SinceL(G) is a symmetric matrix, it is orthogonally diagonalizable

owing to the spectral theorem2 in [44]. Therefore, there exists an orthogonal matrix T for L(G) such that

L(G) = T ΛT−1, where Λ is a diagonal matrix whose diagonal entries are the eigenvalues of L(G). Now, we

can apply a similarity transformation to (3.3) with

ξ (t), T−1x(t). (3.4)

Along with (3.3) and (3.4), we obtain

ξ̇ (t) =−Λξ (t)+T−1dw(t), ξ (0) = ξ0, t ≥ 0, (3.5)

where

Λ =


λ1

. . .

λn

 and T =


| |

v1 . . . vn

| |

 .

By the property of the Laplacian matrix, a diagonal element λi in Λ matrix is zero and its corre-

sponding right eigenvector is 1n. Without loss of generality, we assume that λn is zero. By the construction

of T , vn is 1√
n 1n. By definition, T−1 = T T so that nth row of T−1 is 1√

n 1T
n . Then nth state of (3.5) can be

2If A is a symmetric matrix, then matrix A is orthogonally diagonalizable such that there exists an orthogonal matrix S
satisfying S−1AS, which gives a diagonal matrix whose diagonal entries are the eigenvalues of A.
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written as

ξ̇n(t) =
1√
n

w(t), ξn(0) = ξn0, t ≥ 0, (3.6)

where w(t) satisfies limt→∞

∫ t
0 w(τ)dτ = ±∞. Therefore, ξn(t) is unbounded as t → ∞, so is ξ (t). In

conjunction with (3.4), this implies that x(t) is unbounded as t→ ∞.

Now, we present a numerical example to show the consistency between the simulation result and

the statement given in the motivational example. Consider a multiagent system with the dynamics of

(3.3). The graph topology of the system is shown in Figure 3.1. In this graph, node 16 represents the

misbehaving agent and the others are floating agents. Let the disturbance be w(t)= 1+sin(t), which satisfies

limt→∞

∫ t
0 w(τ)dτ = +∞. We set all initial points of each agent between −1 and 1. Figure 3.2 defines the

color of each agent used in Figure 3.3, which depicts the trajectory of each agent in the multiagent system

subject a disturbance and no control input. Observe that x(t) is unbounded as t→ ∞.

Figure 3.2: Color representation for each agent in Figure 3.3.

The purpose of this paper is to show that the trajectories of all agents in the multiagent system that

consists of a misbehaving agent subject to a bounded disturbance do not diverge with only one control input

having a bounded command applied to any agent in the system. In addition, we show the steady-state value

of each agent in a fixed, connected, and undirected graph for two scenarios; that is; the control input is

applied to a floating agent (i.e., b 6= d) and the misbehaving agent (i.e., b = d), respectively. Moreover,

a graph-theoretical approach is proposed to show the steady-state value of each agent if the graph G is a

fixed, connected and undirected acyclic graph. This approach also provides a way to show that the largest
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Figure 3.3: The trajectories of all agents in the multiagent system, where node 16 is subject to a disturbance
and no control input is applied.

steady-state deviation from the desired command in the multiagent system is minimized if the driver agent

is located as close as possible to the misbehaving agent.

3.4 Stability and Convergence Analysis

In this section, we show that the resulting closed-loop system matrix is Hurwitz regardless of which

agent we implement a proportional integral controller in the multiagent system. In addition, the steady-

state value of each agent is derived when the control input is applied to any agent in the system except the

misbehaving agent (i.e., b 6= d) and directly to the misbehaving agent (i.e., b = d), respectively. Throughout

this section, we assume that G is a fixed, connected, and undirected graph.

Consider the system dynamics as given in (3.1) and (3.2) with

u(t) = −γ1e(t)− γ2z(t), (3.7)

e(t) = y(t)− c(t), (3.8)

ż(t) = e(t), z(0) = z0, t ≥ 0, (3.9)

where γ1, γ2 ∈ R>0 are the controller parameters, z(t) ∈ R denotes the integrator state, c(t) ∈ R denotes the

desired command, and e(t) ∈ R denotes the tracking error between the output of the system and the desired

command.
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Now, using (3.2), (3.7), and (3.8), we can rewrite (3.1) as

ẋ(t) =−Jx(t)− γ2bz(t)+ γ1bc(t)+dw(t), x(0) = x0, t ≥ 0, (3.10)

where J = L(G) + γ1bbT. Also, together with (3.2) and (3.8), the integrator state given in (3.9) can be

rewritten as

ż(t) = bTx(t)− c(t) z(0) = z0, t ≥ 0. (3.11)

Define η(t), [xT(t),z(t)]T. Then, (3.1), (3.2), (3.7)-(3.9) can be compactly written as

η̇(t) = Agη(t)+Bgu∗(t), η(0) = η0 t ≥ 0, (3.12)

where Ag =

−J −γ2b

bT 0

 , Bg =

γ1b d

−1 0

, and u∗(t) =

c(t)

w(t)

.

Note that γ1bbT is a matrix whose entries are all zero except a positive element on the diagonal. By

Lemma 3.3 in [23], J is a positive definite matrix.

Now, we present Lemmas 1 and 2, which play an important role for one of our main results given

in Theorem 1.

Lemma 1. Ag matrix given in (3.12) is Hurwitz.

Proof. Let u∗(t) ≡ 0 in (3.12). Then, it suffices to show that the origin of (3.12) is globally

asymptotically stable.

Consider the following continuously differentiable Lyapunov function candidate

V(x,z) = 1
2

xTx+
γ2

2
z2. (3.13)

Note that V(0,0) = 0, V(x,z) > 0 for all (x,z) 6= (0,0), and the candidate is radially unbounded. The time

derivative of (3.13) along the trajectories (3.10) and (3.11) can be expressed as
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V̇(x(t),z(t)) = xT(t)ẋ(t)+ γ2z(t)ż(t),

= −xT(t)Jx(t)− γ2xT(t)bz(t)+ γ2z(t)bTx(t),

= −xT(t)Jx(t)≤ 0. (3.14)

Now, let S = {η(t) ∈Rn+1 : V̇(η(t)) = 0}. If V̇(η(t)) = 0, then x(t) = 0 since J is positive definite.

Hence, S = {η(t) ∈ Rn+1 : x(t) = 0}. Let η(t) be a solution that belongs identically to S: x(t) ≡ 0 ⇒

ẋ(t) ≡ 0. From (3.10), we obtain γ2bz(t) ≡ 0. This implies that bz(t) ≡ 0 since γ2 ∈ R>0. Then, z(t) ≡ 0.

Therefore, the only solution that identically stay in S is the trivial solution η(t)≡ 0. Thus, the origin is the

globally asymtotically stable by Corollary 4.2 in [22], as desired. �

Remark 1. Note that Ag is Hurwitz irrespective of which agent we apply the control input. Since

Ag is Hurwitz, the system in (3.12) is input-to-state stable. This implies that if u∗(t) is a bounded piecewise

continuous function of time, then η(t) is bounded, so is x(t).

Lemma 2. bTJ−1 = γ
−1
1 1T

n .

Proof. Let rT , bTJ−1. Since J is positive definite, J−1 is positive definite. Thus, we have the

following system of linear equations

Jr = b. (3.15)

It is easy to verify that r = γ
−1
1 1n is a solution of (3.15). Since J is nonsingular, r = γ

−1
1 1n is the unique

solution of (3.15). Hence, the result follows. �

For the next result, we assume that u∗(t) is a constant function and denoted by ū∗ = [c̄, w̄]T ∈ R2.

Theorem 1. Consider the compact form of the system dynamics given by (3.12). Then for all

η0 ∈ Rn+1, limt→∞ x(t) = x?, where

x? = 1nc̄+ J−1(d−b)w̄. (3.16)

In particular, if the control is applied to the misbehaving agent (i.e., b = d), then (3.16) reduces to

x? = 1nc̄. (3.17)
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Proof. Define the following assistant state

ζ (t), η(t)+A−1
g Bgū∗. (3.18)

Inserting (3.12) into the time derivative of (3.18) and using (3.18), we obtain

ζ̇ (t) = Agζ (t), ζ (0) = ζ0, t ≥ 0. (3.19)

Since Ag is Hurwitz, limt→∞ ζ (t) = 0 for all ζ0 ∈ Rn+1. From (3.18), we have

lim
t→∞

η(t) =−A−1
g Bgū∗, for all η0 ∈ Rn+1, (3.20)

which can be also shown as x?

z?

=−

M1 M2

M3 M4


γ1b d

−1 0


 c̄

w̄

 , (3.21)

where z? = limt→∞ z(t) and A−1
g =

M1 M2

M3 M4

. Since J is nonsingular and γ2bTJ−1b = γ
−1
1 γ2 ∈ R>0 by

Lemma 2, M3 =−γ
−1
2 1T

n and M4 =−γ
−1
2 γ1 by Proposition 2.8.7 in [45]. From (3.21), we have

z? =

[
−γ1M3b+M4 −M3d

] c̄

w̄

 . (3.22)

Inserting M3 and M4 into (3.22) gives z? = γ
−1
2 w̄. Using (3.12) and (3.20), we obtain limt→∞ η̇(t) = 0. Thus,

limt→∞ ẋ(t) = 0. Then, (3.10) yields

x? = J−1(− γ2bz?+ γ1bc̄+dw̄
)
. (3.23)

Inserting z? into (3.23), one can easily show that

x? = J−1
[

γ1b d−b

] c̄

w̄

 . (3.24)
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By Lemma 2, (3.24) can be equivalently written as

x? = 1nc̄+ J−1(d−b)w̄. (3.25)

If the control input is applied to the misbehaving agent (i.e., b = d), then (3.17) immediately follows from

(3.25). �

Now, we investigate the case when the disturbance and the desired command are time-varying. For

this purpose, consider the assistant state given in (3.18) with u∗(t) (i.e., ζ (t) , η(t)+A−1
g Bgu∗(t)), where

u̇∗(t) is a piecewise continuous function of time. By following the steps in the proof of Theorem 1, which is

used to obtain (3.19), it can be easily shown that

ζ̇ (t) = Agζ (t)+A−1
g Bgu̇∗(t), ζ (0) = ζ0, t ≥ 0. (3.26)

Corollary 1. Let ẽ(t), x(t)− J−1
[

γ1b d−b

]
u∗(t). Then,

ẽ(t) =Cgζ (t), (3.27)

where Cg = [In,0].

Proof. We can simply rewrite the definition of ẽ(t) as

ẽ(t) =Cgη(t)− J−1
[

γ1b d−b

]
u∗(t). (3.28)

From (3.20), x? =−CgA−1
g Bgū∗. In conjunction with (3.24), this result implies that

CgA−1
g Bgū∗ =−J−1

[
γ1b d−b

]
ū∗, for all ū∗ ∈ R2. (3.29)

Thus, CgA−1
g Bg =−J−1

[
γ1b d−b

]
. Now, (3.28) can be expressed as

ẽ(t) =Cgη(t)+CgA−1
g Bgu∗(t). (3.30)

Then, (3.27) follows immediately from (3.30). �
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Remark 2. Since Ag is Hurwitz, the system in (3.26) with u̇∗(t) viewed as input, is input-to-state

stable. This implies that for any bounded u̇∗(t), ζ (t) is bounded. Hence, ẽ(t) is bounded by Corollary 1.

This also implies that if limt→∞ u̇∗(t) = 0, then limt→∞ ζ (t) = 0 (e.g., see Exercise 4.58 in [22]). Thus,

limt→∞ ẽ(t) = 0. Note that Theorem 1 is a special case of the second implication.

3.5 Discussion

In contrast to Theorem 1, this section proposes a graph-theoretical approach showing the steady-

state value of each agent explicitly in the multiagent system whose graph topology is a tree, which henceforth

refers to a fixed, connected, and undirected acyclic graph. This approach also shows that the largest steady-

state deviation from the desired command in the multiagent system is minimized if the driver agent is located

as close as possible to the misbehaving agent.

We now introduce a useful fact given by Theorem 1.5.1 in [43]: In a tree, there exists a unique path

between any two vertices. This fact is extensively used in this section without explicitly mentioning it. Then,

let G be a tree consisting of a driver agent and a misbehaving agent denoted by vd and vm, respectively.

For each vk ∈V (Pdm), define

Vk ,
{ n⋃

i=1

V (Pki) : V (Pki)∩V (Pdm) = {vk}
}
. (3.31)

The next lemma verifies that the collection P , {Vk : vk ∈V (Pdm)} gives a partition of V (G).

Lemma 3. P satisfies the following properties

i) If Vk ∈ P , then vk ∈Vk.

ii) If Vj ∈ P and Vl ∈ P with j 6= l, then Vj ∩Vl = /0.

iii) V (G) =
⋃

Vk∈P Vk.

Proof. The properties i) and iii) are trivial consequences of the given definition. For the property

ii), let Vj ∈ P and Vl ∈ P with j 6= l, but assume for contradiction that Vj ∩Vl is nonempty. Then, let

vr ∈Vj ∩Vl; hence, vr ∈Vj and vr ∈Vl . By definition, V (Pjr)∩V (Pdm) = {v j} and V (Plr)∩V (Pdm) = {vl}.

Note that {v j,vl} ⊆V (Pjl)⊆V (Pdm). Now, observe that Pjl ∪Plr = Pjr. Thus, V (Pjr)∩V (Pdm) =V (Pjl). In

conjunction with V (Pjr)∩V (Pdm) = {v j}, this implies that {v j} ⊇ {v j,vl}, a contradiction. �

35



www.manaraa.com

Remark 3. For every Vk ∈ P , let Sk ,Vk \{vk}. By Lemma 3, i) Sk = /0 if, and only if, Vk = {vk},

ii) S j ∩Sl = /0 whenever j 6= l, iii) Sk =Vk \V (Pdm), and iv) S,
⋃

k Sk =V (G)\V (Pdm).

To present the main result of this section, given in Theorem 2, we need the following lemmas.

Lemma 4. If Vk ∈ P , then N(vk)∩S⊆ Sk.

Proof. Let Vk ∈ P . Clearly, vk ∈ V (Pdm). Fix v j ∈ N(vk)∩ S. Thus, v j ∈ N(vk) and v j 6∈ V (Pdm).

Now, observe that V (ek j)∩V (Pdm) = {vk}; hence, v j ∈ Sk. �

Lemma 5. Let Vk ∈ P . If vr ∈ Sk, then N(vr)⊆Vk.

Proof. Let vr ∈ Sk. By definition, V (Pkr) ⊆ Vk, V (Pkr)∩V (Pdm) = {vk}, and r 6= k. Assume, on

the contrary, that there exists a v j ∈ N(vr) such that v j 6∈ Vk. Hence, Pkr ∪ er j = Pk j and V (Pk j)∩V (Pdm) =

{vk,v j}. This implies V (er j)∩V (Pdm) = {v j}. Now, there exists a Vj ∈ P such that vr ∈ S j, contradicting

the fact that Sk∩S j = /0. �

Let us partition x? in Theorem 1 as x? = [x?1, . . . ,x
?
n]

T.

Theorem 2. Let Vk ∈ P . If vi ∈Vk, then

x?i = c̄+dG(vd ,vk)w̄. (3.32)

Proof. For each vi ∈ Vk, let x̄i , c̄+ dG(vd ,vk)w̄. By means of Lemma 3, define x̄ , [x̄1, . . . , x̄n]
T.

Then, the problem is to verify that x? = x̄. Note that it is enough to prove this when c̄ = 0 and w̄ = 1. Since

J is nonsingular, it is now enough to show that Jx̄ = d−b.

We can always enumerate the vertices of G as follows: Let vd = v1 and vm = v|Pdm|. Let the vertices

of Pdm be in ascending order from vd to vm; that is, Pdm = v1v2 . . .vm. As a consequence of the enumeration,

b is a unit vector with a 1 in the 1st element and d is a unit vector with a 1 in the mth element. Moreover,

J = L(G)+diag(γ1,0, . . . ,0).

Suppose first that S is nonempty. Let Ja and Jb be the matrices consisting of the first m rows of J

and the last n−m rows of J, respectively. They are denoted by

Ja ,


— J1 —

...

— Jm —

, Jb ,


— Jm+1 —

...

— Jn —

.
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Then, J = [JT
a ,J

T
b ]

T. Let also ba be the vector that consists of the first m elements of d− b so that d− b =

[bT
a ,0]

T. Note that Jx̄ = d−b if, and only if, Claims 1 and 2 hold.

Claim 1. Jax̄ = ba.

Proof (Claim 1). Suppose m> 2. In this case, ba = [−1,0, . . . ,0,1]T. First, let vr ∈V (Pdm)\{v1,vm}.

Thus, Vr ∈ P and vr ∈ Vr, which implies x̄r = dG(v1,vr) = r−1. By Lemma 4, N(vr)∩S ⊆ Sr. Therefore,

x̄i = x̄r for all vi ∈ N(vr)∩ S. Next, observe that N(vr)∩V (Pdm) = {vr−1,vr+1}. Hence, x̄r−1 = r− 2 and

x̄r+1 = r. Now, Jrx̄ = −x̄r−1 + drx̄r− x̄r+1− (dr− 2)x̄r. This yields Jrx̄r = 0. Second, consider v1. Then,

x̄1 = 0. Similar to the first subcase, x̄i = x̄1 for all vi ∈N(v1)∩S. It is also noted that N(v1)∩V (Pdm) = {v2},

which gives x̄2 = 1. Thus, J1x̄ = (d1 + γ1)x̄1− x̄2− (d1−1)x̄1 =−1. Third, consider vm; hence, x̄m = m−1.

In the same way as above, x̄i = x̄m for all vi ∈ N(vm)∩S. Also, N(vm)∩V (Pdm) = {vm−1}, so x̄m−1 = m−2.

Thus, Jmx̄ =−x̄m−1 +dmx̄m− (dm−1)x̄m = 1. This completes the proof for the case m > 2.

Suppose m≤ 2. If m = 2, then ba = [−1,1]T and the result follows by only considering the first and

the third subcases of the first case. If m=1, the result can be easily verified.

Claim 2. Jbx̄ = 0.

Proof (Claim 2). Let vr ∈ S. We assume, without loss of generality, that vr ∈ Sm. But N(vr)⊆Vm by

Lemma 5. Thus, x̄i = x̄m for all vi ∈ N(vr)∪{vr}, so Jrx̄ = 0.

Second, suppose that S = /0. In this specific case, one can show that Jx̄ = d− b by following and

simplifying the steps in the proof of Claim 1. �

The next corollaries are now immediate.

Corollary 2. Let ẽi(t) , xi(t)−
[

1 dG(vd ,vk)

]
u∗(t) for all vi ∈ Vk. Then, ẽ(t) in Corollary 1 is

equal to [ẽ1(t), . . . , ẽn(t)]T.

Corollary 3. Let e?i , x?i − c̄. Then,

max
vi∈V (G)

|e?i |= dG(vd ,vm)|w̄|, argmax
vi∈V (G)

|e?i |=Vm, (3.33)

min
vi∈V (G)

|e?i |= 0, argmin
vi∈V (G)

|e?i |=Vd . (3.34)

3.6 Illustrative Numerical Examples

In this section, we present numerical examples to illustrate the implementation of theoretical results

given in this paper. First, we reconsider the motivational example given in Section 3.3 to show the bound-
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edness of the trajectory of each agent in the multiagent system if a control input is applied to any agent. To

be consistent with the example in Section 3.3, node 16 denotes the misbehaving agent. For this example, we

select node 4 as the driver agent. Next, the desired command is given as c̄ = 5 and the misbehaving agent is

subject to the disturbance w(t) = 1+ sin(t). We set the coefficients γ1 and γ2 as 1.

Figure 3.4: Color representation for each agent in Figure 3.5.

Figure 3.5: The trajectories of all agents in the multiagent system, where node 16 is subject to a disturbance
and node 4 is injected a control input.

In contrast to the unboundedness of the trajectory of each agent in the example given in Section 3.3,

the trajectories of all agents stay bounded since all conditions given in Remark 1 are satisfied. Figure 3.4

defines the color of each agent used in Figure 3.5, which depicts the trajectory of each agent. The trajectories

of agents showing the similar response are painted by the same color in Figure 3.4.
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In the following examples, we demonstrate the steady-state value of each agent by using Theorems

1 and 2 since the boundedness of the trajectory of each agent has already been shown by applying a control

input to an agent in the system.

Consider the multiagent system with the graph topology given in Figure 3.1. In this example, we

set the disturbance w = 5 and the desired command c = 5. In addition, the coefficients γ1 and γ2 are set as 1.

Let the 5th and 16th nodes denote the driver and the misbehaving agents, respectively.

Figure 3.6: Color representation for each agent in Figure 3.7.

Figure 3.7: The trajectories and the steady-state values of all agents in the multiagent system, where node
16 is subject to a disturbance and node 5 is injected a control input.

The steady-state values of all agents are obtained by using Theorem 1. If we apply the formula

given in (3.16), then the steady-state values of all agents are obtained as x?16 = x?8 = x?10 = x?12 = x?15 = 20,

x?2 = x?3 = x?7 = x?11 = 15, x?4 = x?1 = x?6 = x?14 = 10, x?5 = x?9 = x?13 = 5. Figure 3.6 defines the color of each

agent used in Figure 3.7, which depicts the trajectory and the steady-state value of each agent. Similarly,
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agents having almost identical trajectories are painted by the same color. The steady-state value of each

agent obtained by Theorem 1 satisfies the one shown in Figure 3.7.

In the last example, we reconsider the multiagent system with the graph topology given in Figure

3.1 to obtain the steady-state value of each agent by Theorem 2. In this case, let the 9th and 16th nodes be

the driver and the misbehaving agents, respectively. The disturbance w̄ and the desired command c̄ are set

as w̄ = 3 and c̄ = 7. Let coefficients γ1 and γ2 be 1.

We enumerate vertices of G as desired in Theorem 2. Then Figure 3.1 turns into Figure 3.8.

Therefore, nodes 9, 5, 4, 2, and 16 in Figure 3.1 are represented by nodes 1, 2, 3, 4, and 5 in Figure

3.8. After this point, we recall nodes with numbers as given in Figure 3.8.

Figure 3.8: Color representation for each agent in Figure 3.9.

Now, nodes 1 and 5 denote the driver and the misbehaving agents in Figure 3.8, respectively. The

path P15 (i.e., Pdm) from v1 to v5 is shown by the orange line and the set of vertices on this path is V (P15) =

{v1,v2,v3,v4,v5}. By definition, V1 = {v13}, V2 = { /0}, V3 = {v6,v9,v14}, V4 = {v7,v11,v16}, and V5 =

{v8,v10,v12,v15}. By Theorem 2, the steady-state value of each agent vi ∈ V (Pdm) is obtained as x?1 = 7,

x?2 = 10, x?3 = 13, x?4 = 16, and x?5 = 19. Similarly, the steady-state value of each agent in the set S is obtained

as x?13 = 7, x?6 = x?9 = x?14 = 13, x?7 = x?11 = x?16 = 16, and x?8 = x?10 = x?12 = x?15 = 19. The steady-state value

of each agent obtained from (3.16), (3.32), and Figure 3.9 gives the same result as expected in this example.
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Figure 3.9: The trajectories and the steady-state values of all agents in the multiagent system, where node 5
is subject to a disturbance and node 1 is injected a control input.

3.7 Conclusions

In this paper, we have studied the stability analysis of the multiagent system in the presence of only

the misbehaving agent and both the misbehaving and the driver agents. It has been shown that the proposed

a proportional integral controller for the driver agent in the multiagent system subject to a disturbance

makes the resulting closed-loop system matrix of the multiagent system Hurwitz. Then, we demonstrate two

methods to calculate the steady-state value of each agent in the multiagent system whose graph topology

for the first method is fixed, connected and undirected and for the second method is a tree. Lastly, we also

propose a way to show that the largest steady-state deviation from the desired command in the multiagent

system is minimized if the driver agent is located as close as possible to the misbehaving agent.

We have identified some potential future research directions. We believe that there would be a good

possibility to extend Theorem 2 to graph topologies that consist of cycles without violating the uniqueness

of the path Pdm owing to the simulation results. In addition, we will investigate multiagent systems in the

presence of multiple misbehaving agents with certain number of driver agents.
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CHAPTER 4: CONCLUDING REMARKS AND FUTURE RESEARCH

4.1 Concluding Remarks

The research reported in this thesis has shown the experimental validation of recently proposed dis-

tributed adaptive control architecture for a class of heterogeneous uncertain multiagent systems. In addition,

a proportional integral controller for a driver agent in the multiagent system having limited resources in the

presence of a disturbance has been proposed with stability analyses.

Specifically, we used the distributed adaptive control architecture proposed in [15], which has a

nominal part and an adaptive augmentation part for each agent to suppress the effect of uncertainties and

disturbances effectively in our experiment. In our experimental results, we observed that the output of the

leader is followed by the output of agents the with huge amplitude of oscillations comparing to the control

input with adaptive augmentation. Moreover, the effect of uncertainties were minimized and the output of

the leader was followed by the output of agents with considerably lower amplitude of oscillations by turning

on the adaptive augmentation. These observations coincide with the theoretical results in [15]. We also

provided experimental plots to show the efficacy of the proposed distributed adaptive control architecture.

Due to some limitations of using the control architecture similar to [15] in some real-life scenarios,

we proposed a proportional integral controller in Chapter 3, which makes the resulting closed-loop system

matrix of the multiagent system Hurwitz. Therefore, the trajectories of all agents in the multiagent system

with a fixed, connected, and undirected graph, where the system is subject to a bounded disturbance through

an agent (i.e., misbehaving agent), remain bounded with only one control input having a bounded command

irrespective of which agent we apply the control input. We then showed the steady-state value of each

agent based on the control input is applied to the undisturbed and disturbed agent, respectively. Moreover, a

graph-theoretical approach is derived to show the steady-state value of each agent in the multiagent system

whose graph topology is a fixed tree. This approach provides a way to show that the largest steady-state

deviation from the desired command in the multiagent system is minimized if the driver agent is located as
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close as possible to the misbehaving agent. We also presented several numerical examples to illustrate the

implementation of the theoretical results.

4.2 Future Research

In this section, there are some research directions and suggestions that can be considered for future

work related to the results in this thesis. In addition to the experiment presented in Chapter 2, additional

experimentation with more complex systems could be conducted in order to show the effectiveness of the

distributed adaptive control architecture. While the results in Chapter 3 derived for a multiagent system

subject just a single control input and a disturbance, this can be extended to multiple control inputs with

disturbances. This can also be considered from the optimality perspective such as deciding optimal number

of control inputs to suppress the effect of disturbances. Lastly, some experiments can be conducted to bridge

the gap between theory and practice.
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APPENDIX A: ERRATA LIST

The reference [25] given in footnote 1 in Chapter 2 is replaced with [46].
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